Regulated DC Power Supply Topologies

Simple DC electronic circuits can be powered by directly connecting a battery.

However, circuits usually require a constant input voltage for proper operation.

This log is a small parenthesis to explain the different regulated DC power supply topologies, before looking at the FunKey power supply schematics in details.

If you are already comfortable with this subject, you can skip this log entirely!

Linear Regulators

The easiest method to achieve this constant load voltage despite a varying source voltage is to linearly control the resistance of the regulator in accordance with the load, resulting in a constant output voltage.

Shunt Regulator

The simplest voltage regulator is the shunt regulator, built around a Zener diode which most interesting characteristic is to maintain a constant voltage across itself when the current through it is sufficient to take it into the Zener breakdown region. A simple shunt regulator looks like this:

Series Regulator

By adding a emitter-follower transistor to the simple shunt regulator, the small base current of the transistor forms a very light load on the Zener, thereby minimizing variation in Zener voltage due to variation in the load, resulting in a better regulation. Here is a schematic for this series regulator:

Integrated Linear Regulator

In integrated voltage regulators, the discrete Zener diode is replaced by a more sophisticated (but easier to integrate) circuit built around a resistor divider feeding an operational amplifier, a voltage reference, and a transistor driving the emitter-follower pass transistor:

Usually, the pass transistor and its driving transistor are combined into a single Darlington transistor plus a controllable current source like this:

LDO (Low Drop-Out) Regulator

The above circuit works well, but its drop-out voltage (the difference between the input and output voltage) is rather high because of this transistor cascade, around 1.5V to 2.5V.

By replacing the emitter-follower Darlington transistor by a PNP transistor in an open collector or open drain topology, the drop-out voltage is reduced to 0.7V or lower:

SMPS (Switched-Mode Power Supply) or DC/DC Converters

A linear regulator provides the desired output voltage by dissipating excess power as heat in the Zener diode or in the pass transistor. Hence its maximum power efficiency is VOUT/ VIN since the volt difference is wasted to heat the birds.

In contrast, a Switched-Mode Power Supply changes output voltage and current by switching non-linear storage elements, such as inductors, transformers and capacitors between different electrical configurations.

These elements are non-linear because the inductor and transformer respond to changes in current by inducing its own voltage to counter the change in current, whereas a capacitor responds to changes in voltage by inducing its own current to counter the change in voltage.

Thus, depending on the way the components are arranged, it is possible to obtain SMPS circuits that either have an output voltage higher than the input voltage (“Boost Converters”), or lower than the input voltage (“Buck Converters”, as is it subtracts or “Bucks” the supply voltage).

Because of technology, power inductors are easier to manufacture, take less space and are more stable over time than their counterpart capacitors. This is why most power DC/DC converters are built using inductors. Capacitor-based SMPS are generally used for lower power applications, such as for generating the +12V and -12V voltages required by true RS232 from a +3.3V or +5V power supply in the ubiquitous MAX232 drivers.

Boost Converter

The most basic circuit for the Boost converter is the following:

If the switch is driven by a square wave, the peak-to-peak voltage of the waveform measured across the switch can exceed the input voltage from the DC source. This is because the non-linear characteristic of the inductor, and this voltage adds to the source voltage while the switch is open.

Please note that in this converter, the output voltage is not isolated from the input voltage.

Buck Converter

The corresponding basic circuit for the Buck converter is the following:

The way this converter works is described in details here. Basically, when the switch is closed, the inductor will produce an opposing voltage across its terminals in response to the changing current, reducing the output voltage, and meanwhile the inductor stores this energy in the form of a magnetic field. When the switch is opened,  the current will decrease and will produce a voltage drop across the inductor, and now the inductor becomes a current source, where the stored energy in the inductor’s magnetic field is restored and fed to the load.

Please note that in this converter too, the output voltage is not isolated from the input voltage.

Isolated SMPS

Isolated Switched-Mode Power Supplies use a transformer to isolate the input voltage from the output voltage, and thus can produce an output of higher or lower voltage than the input by adjusting the turns ratio.

Advantages and Disadvantages

Linear regulators are simpler than SMPS, and their linear behavior produce a very clean output voltage, but their efficiency is directly proportional to the difference between the input and output voltage, which is dissipated as heat.

However, for light loads and/or when the voltage drop-out is low, LDOs are very useful.

OTOH, SMPS are more complex and require more components, but their efficiency is much better (typically 80-90%), resulting in less heat, with the drawback of a switching electrical noise pollution of both the input voltage (that may couple electrical switching noise back onto the mains power line) and the output voltage (with electromagnetic interference (EMI) and a ripple voltage at the switching frequency and all its harmonic frequencies).

SMPS are thus almost exclusively used when heavy loads are used and/or when the voltage drop-out is important.

Why so many different Power Supply Voltages?

Looking back at the previous log on the CPU schematics, the FunKey device clearly needs a sophisticated power supply in order to fulfill the CPU power requirements. They are recalled below, along with the maximum current requirements found in the Allwinner V3s reference design (page 3):

  • +3.3V / 1.2A for the I/O power supply
  • +3.3V_AO / 30 mA for the Always-On power supply (RTC timer)
  • +3.0V / 200 mA for the analog power supply
  • +1.8V / 1A for the DDR2 DRAM power supply
  • +1.25V / 1.6 A for the core power supply

But why in the first place are so many different power supply voltages required?

Power Efficiency

A first answer is: for better power efficiency.

As P = U x I (Electrical power is the product of voltage level by current intensity), you can reduce power by decreasing the required current or reducing the operating voltage. Assuming you already do your best to reduce the required current, you can still reduce power by reducing voltage.

Reducing Power Supply Voltage

Voltage Drop

But how far can you go? Over long distance, you have the voltage drop from the conductor linear resistance, but this effect can be neglected for small boards. 

Noise Margin

You have inductive and capacitive coupling between conductive wires and planes too, but within a PCB, these coupling only have a limited direct effect on voltage. However, these coupling play a role in that they will pick up external electromagnetic noise from the surroundings and inject it into the circuit.

And with digital circuits, a critical limit when lowering the operating voltage is the “noise margin” or difference in absolute voltage levels between a logical ‘0’  and logical ‘1’, which determines the maximum amplitude of spurious voltage spikes that a conductor can pick up that will trigger an erroneous logic level change.

This phenomenon mostly depends on the circuit scale: a long-distance circuit between boards will require higher voltages (typically +12V or +24V) to limit this effect, whereas a circuit between boards a few meters apart or using through-hole chips on the same board wile require a lower voltage (typically +5V like the old Arduinos). Using SMT chips will allow even smaller boards and lower voltages (+3.3V is today typical), and with wires running on the same silicon die, it is possible to go down to +1.2V, given the current technological limits.

Voltage Swing

There are other reasons why you should try to minimize voltages: the core CPU for example needs to run as fast as possible, and lowering its operating voltage will shorten the signal rise and fall duration as the voltage swing is reduced.

Other Power Supply Considerations

Besides reducing the operating voltage, there are other considerations that may push to multiply the number of power supplies in a design:

Quiescent Current

As for power supply used for standby operation providing small currents,  a very-low leakage current (“quiescent current”) is required as it can no longer be neglected compared to the current required by the light load and even more importantly because this current consumption is permanent.

Ripple Voltage

For sensitive circuits such as ADCs (Analog to Digital Converters) or PLLs (Phase-Locked Loops) which rely on comparing very small voltage differences, a “clean” power supply featuring very low ripple voltage amplitude is required to achieve a good resolution and/or accuracy. This characteristic is only possible to obtain using LDOs and not SMPS, and the figure to pay attention to is then the PSRR (Power Supply Rejection Ratio) or how much a variation in the input voltage will affect the output voltage: the higher, the better! A value > 50 dB is a good starting point.

Application to the FunKey Design

Based on these considerations, it is now clear that each V3s power supply voltage has a good reason to exist:

  • +3.3V / 1.2A is used for powering the I/Os to connect between chips on the board. Given the required current, a SMPS is required for reaching a good efficiency
  • +3.3V_AO / 30 mA for the Always-On power supply (RTC timer) requires a low quiescent-current, so an LDO is used
  • +3.0V / 200 mA for the analog power supply also requires an LDO, this time to minimize the ripple voltage
  • +1.8V / 1A for the DDR2 DRAM power supply: this strange voltage level is typical for DDR2 DRAM memory chips, and is the result of driving the large memory array inside the chip
  • +1.25V / 1.6 A for powering the CPU core to minimize the voltage swing and increase the possible CPU frequency. Given the required current, a SMPS is required for reaching a good efficiency, too